Source code for NiaPy.benchmarks.step

# encoding=utf8
# pylint: disable=anomalous-backslash-in-string
"""Implementations of Step functions."""

import math

__all__ = ['Step', 'Step2', 'Step3']


[docs]class Step: r"""Implementation of Step function. Date: 2018 Author: Lucija Brezočnik License: MIT Function: **Step function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right)$ Equation: \begin{equation} f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor \left | x_i \right | \rfloor \right) \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ def __init__(self, Lower=-100.0, Upper=100.0): self.Lower = Lower self.Upper = Upper
[docs] @classmethod def function(cls): def evaluate(D, sol): val = 0.0 for i in range(D): val += math.floor(abs(sol[i])) return val
return evaluate
[docs]class Step2: r"""Step2 function implementation. Date: 2018 Author: Lucija Brezočnik Licence: MIT Function: **Step2 function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **lobal minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (-0.5,...,-0.5)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i + 0.5 \rfloor \right)^2 \end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ def __init__(self, Lower=-100.0, Upper=100.0): self.Lower = Lower self.Upper = Upper
[docs] @classmethod def function(cls): def evaluate(D, sol): val = 0.0 for i in range(D): val += math.pow(math.floor(sol[i] + 0.5), 2) return val
return evaluate
[docs]class Step3: r"""Step3 function implementation. Date: 2018 Author: Lucija Brezočnik Licence: MIT Function: **Step3 function** :math:`f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)` **Input domain:** The function can be defined on any input domain but it is usually evaluated on the hypercube :math:`x_i ∈ [-100, 100]`, for all :math:`i = 1, 2,..., D`. **Global minimum:** :math:`f(x^*) = 0`, at :math:`x^* = (0,...,0)` LaTeX formats: Inline: $f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)$ Equation: \begin{equation}f(\mathbf{x}) = \sum_{i=1}^D \left( \lfloor x_i^2 \rfloor \right)\end{equation} Domain: $-100 \leq x_i \leq 100$ Reference paper: Jamil, M., and Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. """ def __init__(self, Lower=-100.0, Upper=100.0): self.Lower = Lower self.Upper = Upper
[docs] @classmethod def function(cls): def evaluate(D, sol): val = 0.0 for i in range(D): val += math.floor(math.pow(sol[i], 2)) return val
return evaluate